New CEN paper: Stress and learning in pupils: Neuroscience evidence and its relevance for teachers

stressed-kid

The CEN has published a new paper in the journal Mind Brain and Education reviewing current neuroscience evidence on how stress affects children’s learning in the classroom. Focusing on primary age pupils, the main findings are:

  • Successful learning requires some stress – but too much stress may inhibit, and a positive challenge for one child may under- or over-stimulate another child and impact his or her learning
  • The complex relationship between stress and learning is highly individual across pupils, depending on multiple long- and short-term factors, as well as the child’s appraisal of the situation and their available coping strategies
  • We look at potential classroom stress management interventions for primary school children (7-11 years), including psychological and physiological approaches.
  • This paper aims to help teachers become aware of, and to begin to accommodate, children’s differing needs with respect to stress and learning

Here, lead author Sue Whiting discusses what our review of the evidence revealed:

“We are starting to understand the complex ways in which primary school children’s stress levels affect how well they pay attention and learn.

WHAT DOES STRESS DO TO CHILDREN?

We are all familiar with common symptoms of stress, such as a raised heart rate, excessive sweating and a dry mouth, which are part of the body’s ‘fight or flight response’. However, we now know that, in addition to these bodily changes, stress also associates with other, more subtle mental changes.

This complex relationship is highly individual for every pupil, depending on multifarious long-term factors (e.g., genetics, environment) and short-term factors (e.g., recent stress exposure before arriving at school), with some children being more environmentally sensitive than others.

Stress can increase children’s attention and learning capacities in some circumstances but hinder them in others. Because of these individual differences, a positive challenge providing optimal learning outcomes for one child may under or over-stimulate another child, thus potentially inhibiting learning. Furthermore, a child’s stress response to learning challenges may vary from day to day, or even during the same school day, depending on their appraisal of the situation and the coping strategies the child has available. A child’s perceived stress may not even constitute a valid stress from the teacher’s viewpoint.

HOW CAN STRESS BE REDUCED (OR HARNESSED) IN THE CLASSROOM?

The research on stress management interventions in children is still in its early days. Thus far, we are only able to outline potential classroom strategies for addressing the issue. The main psychological factors producing the strongest adverse stress response during motivated performance tasks are (1) an out-of-control feeling and (2) a social-evaluative threat (being judged).

Psychological approaches

Various psychological methods of reappraising stress have therefore been suggested by other researchers: e.g., by simply adding the word ‘yet’ to what would otherwise be a negative sentence ‘You haven’t done it, yet’ effectively diffuses the negativity by suggesting that the child will accomplish it a later date. Embracing-the-challenge (i.e. a ‘stress-is-enhancing’ mind-set) can affect an individual’s stress response and may lead to more positive outcomes than worrying-about-the challenge (i.e., a stress-is-debilitating mind-set). Using the simple self-statement ‘I am excited’ may help reappraise anxiety as excitement about a new challenge. Practising mindfulness may also help, as may presenting learning tasks tailored towards children’s hidden talents and strengths.

Physiological approaches

Physiological methods such as breathing techniques e.g. nasal, slow-paced, deep, diaphragmatic breathing may be effective by altering stress-related physiology, e.g. by shifting it towards increased activity within the parasympathetic (rest, digest and repair) nervous system and decreasing the fight or flight response. A simple breathing exercise could be easily included in the classroom as an alternative ‘attention grabber’. Physical exercise may benefit children’s cognitive function by altering their stress-related physiology as well as providing other benefits (e.g. fresh air, light, social interaction, and taking a break). As a stressful event can adversely affect later learning outcomes (e.g. for a couple of hours afterwards) we speculate that breakfast clubs may serve a dual purpose in improving learning outcomes during the first two lessons for vulnerable children experiencing stress before school, by providing a longer time for delayed learning-suppressive chemicals to dissipate.

THE FUTURE

More research needs to be done to establish the most effective classroom interventions to not only prevent stress-induced impairments but also enable all children to achieve their full potential; however, raising teachers’ awareness of the inter-individual differences in their pupils’ stress responses will be an important step in accommodating the differing needs of children in their classrooms.”

Reference: Whiting, S. B., Wass, S. V., Green, S., & Thomas, M. S. C. (2021). Stress and Learning in Pupils: Neuroscience Evidence and its Relevance for Teachers. Mind, Brain and Education. First published: 28 February 2021. https://doi.org/10.1111/mbe.12282

Teenagers with autism preparing for university – does research inform cognitive training to improve planning skills?

early-college-prep

The CEN received an enquiry from a parent whose 17-year-old daughter has autism and is preparing to move to university. The daughter is bright but has executive functioning difficulties in ‘not being productive’ and being ‘slow at everything’. Executive functioning is the technical term for processes of cognitive control, including attention, task selection, and planning. It also includes working memory: keeping information in mind and manipulating it to achieve current task goals. The parent enquired whether current research points towards any specific structured programmes designed to develop executive functioning skills that would benefit their daughter.

We asked Dr. Petri Partanen, one of the leading researchers in planning skills in children with learning difficulties, based at the Mid Sweden University, who offered the following advice.

“I will try my best to answer the question, considering interventions that can be managed at home and that might bring improvements in executive functions. This is general advice that might not be suitable in the specific case, since that would require more background information – particularly since there are many different cognitive profiles underlying the diagnosis of autistic spectrum disorder (ASD). As I have been working as a practitioner with children and youth with learning difficulties, I will also share some thoughts from that perspective.

To start with I would say that there is scarce evidence of specific methods for improving executive functions, including planning via training protocols implemented outside the school context, for children and youth with ASD.

I am hesitant to recommend working memory training, even though there are some studies with children and adolescents with ASD showing positive effects (see for example, this study by Weckstein et al., in 2017). The dilemma here is that such training regimes build on the idea of training abilities separated from the content and context. Thus, they require the child to process far transfer. Far transfer means when learned knowledge and skills are extended from the taught context to another dissimilar context. Far transfer still needs to be proven, in my humble opinion.

There are some pilot studies which indicate that combining such cognitive stimulus training programs with metacognitive strategy coaching might increase the effects of such interventions on executive functions (see for example this study by Macoun and colleagues published in 2020). Metacognitive training teaches children explicit strategies about how to apply their current knowledge to new situations. For example, in the aforementioned pilot study, 6-12 year old children with ASD were taught metacognitive strategies using a 5-step script: (1) identify the issue/difficulty, (2) state the reason for the issue/difficulty, (3) select and implement a strategy, (4) evaluate the outcome of the strategy, and (5) once a strategy works, celebrate success (i.e., provide positive reinforcement).

On the other hand, the CogMed working memory training program can be managed at home quite easily, and in combination with a raised metacognitive awareness it can stimulate the adolescent to apply cognitive functioning in different situations – for example through a discussion about important strategies that can be used in studying. Sometimes this discussion can be dealt with by parents, sometimes it has to be someone else, a counsellor or educational psychologist following this. I do think there is ASD support organised at universities in UK, which will be very important. In Sweden there are centers at each university, and I have followed several cases of adolescents with ASD that have been successful, so there are grounds for optimism.

I am particularly interested in interventions that help adolescents become metacognitively aware and help them to find good academic self-regulation strategies, and hopefully together with raised awareness among teachers, implement the study strategies.

As an experienced practitioner, I would say that this would be one of the important keys to success, and help the soon-to-be-adult to plan their studies, try out strategies that fit them, and develop some planning skills. I think finding opportunities as a parent to discuss these questions with the adolescent will be important. This could be very helpful for an adolescent taking the step to university studies, and clearly the adolescent besides challenges has a lot of cognitive resources and strengths.

If we instead look at intervention protocols addressing more specific subject skills for children and adolescents with ASD, there is much more promising research. Particularly, Self-Regulated Strategy Development (SRSD) is well-researched and includes planning facilitation in different subject areas like reading, writing, and mathematics (see, for example this systematic review of writing instruction by Asaro-Saddler published in 2016, and this meta-analysis on reading interventions by Sanders and colleagues in 2019). However, the SRSD protocol is meant to be implemented by teachers and not parents. These protocols still might inspire what to focus on in the support, even in the role as a parent.”

COVID-19 and children’s return to school – Evidence to inform decision-making

backtoschool

In making decisions around the timing of children’s return to school following the COVID-19 crisis, it is quite right that policymakers, educators, and parents prioritise evidence around health risks. However, balanced decision-making also requires considering the evidence regarding the impact of delaying children’s return to school on educational and psychosocial outcomes.

Here we summarise some educational, psychological, and neuroscientific evidence regarding:

  • risks that continued homeschooling will exaggerate the attainment gap between children from different socioeconomic groups
  • limits in the effectiveness of online learning when used on its own
  • the greater social impact of a delayed return to school on adolescents, for whom contact with their peer group is particularly important

COVID-19 and social inequalities

Since the end of March, schools have been closed to all but the children of key workers and specific groups of vulnerable children. It is becoming increasingly clear that the Covid-19 pandemic is impacting disproportionately more children from low socioeconomic backgrounds and children in difficultly more generally. The Sutton Trust has released several reports examining the impact of school closure on children, with an eye on its ultimate impact on their social mobility. We summarise the results of one of their key reports[i] focussing on school closures.

The authors find that 23% of pupils are reported to be taking part in live and recorded lessons online every day. However, pupils from middle class homes are much more likely to do so (30%), compared to working class pupils (16%). The home learning environment is linked with academic outcomes[ii], but it is likely to play an even more critical role now. More than three quarters of parents with a postgraduate degree, and just over 60% of those with an undergraduate degree felt confident directing their child’s learning, compared to less than half of parents with A level or GCSE level qualifications.

In the most deprived schools, 15% of teachers report that over a third of their students would not have adequate access to an electronic device for learning from home, compared to only 2% in the most affluent state schools. Inequalities in support are being reflected in the amount and quality of work received by teachers. Fifty percent of teachers in private schools report they are receiving more than three quarters of work back, compared with 27% in the most advantaged state schools, and just 8% in the least advantaged state schools.

Teachers were asked for their preferred strategies to prevent some pupils from falling behind during the period of shutdown. Over half of secondary teachers cited the provision of tech devices. Another popular option was providing less well-off families with stationery and curriculum resource packs, which could help to alleviate the divide in digital access. Half of teachers also supported some form of staggered return to school, or summer ‘catch up classes’ for disadvantaged pupils, to give them a chance of restarting school on an equal footing.

The Education Endowment Foundation (EEF) has also raised concerns. While the attainment gap between disadvantaged pupils and their classmates at the end of primary school has narrowed over the past 10 years, the EEF suggest that  based on what we know about the impact of summer learning loss on disadvantaged pupils[iii], this gain will be reversed by the combination of economic hardship and school closures caused by Covid-19.

The EEF is developing a response to this crisis based around the following two key principles: (1) Mitigation to limit the negative impact on disadvantaged pupils while schools are closed, and (2) Compensation to support disadvantaged pupils to bounce back when schools re-open.

As part of the mitigation strategy, they have reviewed evidence on how to best support remote learning in pupils, and they have released a set of evidence-based resources to help parents with home schooling. When implementing strategies to support pupils’ remote learning, or supporting parents to do this, key things to consider include:

  • Teaching quality is more important than how lessons are delivered
  • Ensuring access to technology is key, especially for disadvantaged pupils
  • Peer interactions can provide motivation and improve learning outcomes
  • Supporting pupils to work independently can improve learning outcomes
  • Different approaches to remote learning suit different types of content and pupils

How effective is homeschooling?

Parents have been pitched into a position where they are required to homeschool their children, with variable support from schools. Once more, this variation itself is likely to contribute to differences on what children gain from homeschooling. While the research is reasonably positive on the academic attainment produced by homeschooling in itself[iv] (despite some difficulties in evaluation given the self-selecting nature of the parents[v]), such research stems from families where the parents have chosen and are committed to homeschooling. It may not give an insight into the involuntary homeschool situation that parents find themselves in. For example, there will be variation in the opportunities and resources that parents can bring to homeschooling their children, depending on factors such as work commitments and caring responsibilities. Again, these risk exaggerating disparities between children’s educational outcomes.

 

online-learning

Online education for primary school children: How much online learning can children really do?

Will technology be the saviour of children required to learn at home? The evidence from primary-age children at least is that online learning is limited in its effectiveness.

Primary school children learn best when they remain in what is called their zone of proximal development – that is, when they complete tasks that are just within the boundaries of what they can achieve with the help from a more knowledgeable other. This more “knowledgeable other” can be a person (usually a parent or teacher) or can be a tool such as an app or computer technologies that can keep children motivated by adjusting the difficulty of the task at hand and providing feedback.

During the past few years there has been an explosion of educational apps that have claimed to support preschool and primary school children’s learning, especially in relation to reading and mathematics. However, there is dearth of evidence what children age 6 to 12 can learn from apps[vi]. For example, a recent systematic review[vii] identified only 11 studies that have evaluated the use of computerised instructional programmes for children aged 4-11 years and found mixed results in terms of how much these programmes improved children’s mathematical outcomes. Similarly, for reading apps, the evidence demonstrates only small effects on children’s reading abilities[viii].

There are many factors that impact on whether or not children learn from computerised programmes. It is not just the design features of the app[ix] that matter, but also parents’ engagement and involvement with their children while they play[x]. The evidence suggests that educational apps are not very successful in replacing teachers without parental support.

Another tool that has been suggested to aid children’s homeschooling during Covid-19 is intelligent tutoring systems. This term covers a variety of computerised technologies that provide immediate and customised instruction and feedback, to provide high quality education without the need of a teacher or parent. Once more, evidence on how successful these are in improving children’s learning is mixed. A meta-analysis on K–12 mathematics learning[xi] concluded that intelligent tutoring systems have small or no effect on learning in these grades; and that these tools may even cause negative effects to students who were classified as lower achievers. Although a more recent meta-analysis in 2016[xii] showed more positive outcomes, the effects for younger primary-school children were small compared to older secondary school children, suggesting technology may be more effective for older children.

 

back-to-school-tips-for-teens

The potential impact on teenagers

The social distancing measures implemented by the UK and other countries in response to Covid-19 have reduced the opportunity for social interactions for individual of all ages.

However, social deprivation will likely affect children, adolescents, young adults and older adults in different ways. A recent preprint[xiii] argues that adolescents may be particularly susceptible to social deprivation and that this should be taken into account when considering which social distancing measures, such as school closures, to maintain or modify.

The start of adolescence marks a shift in the relative importance of parents and peers. Developmental changes in specific neural circuits lead to increased motivation towards social integration[xiv]. While there is little research on the effect of social deprivation during adolescence in humans, animal models give some insight into the neural mechanisms.

For example, studies in rodents, which are social animals, indicate that social deprivation during a phase equivalent to adolescence has specific significant short-term and long-term consequences on behaviour and neural functioning, in particular affecting the dopamine system[xv]. Notably, a study has shown that rats deprived of social interactions with peers by being reared just with an adult animal – which approximates the situation for many adolescents staying home with their parents during school closure – also showed neural changes[xvi].

However, teenagers are not completely isolated and continue to interact with each other through social media. The extent to which social media use can compensate for the lack of face-to-face interactions is unknown, and is likely to be dependent on individual differences, access to digital resources, and the strength of peer groups before social distancing measures were put in place.

Overall, the research suggests that beyond preparation for school exams and entry to university, governments deciding on the timings of school closures should consider the unique social developmental needs of adolescents.

New research in unprecedented circumstances

In some respects, previous research on educational impacts of school closures and homeschooling is limited because the current circumstances are unprecedented.

Researchers are already carrying out new work to investigate the current situation. For example, research underway at UCL Institute of Education is specifically exploring how secondary school students are coping with pandemic since lockdown in March.

Preliminary data show that schools across the country have been able to provide online resources promptly, but students are also reporting a lack of interaction with teachers and classmates that turns into a lack of motivation to study. Although there are individual differences, with some students who are actually enthusiastic about remote learning – they can sleep more in the morning and avoid commuting – there is general consensus that college life and interaction with teachers and friends is irreplaceable.

New work is also underway to better understand the impact of distance learning through technology, and parent-supported homeschooling, on mathematics learning for children aged 5-14 years. It investigates the home-learning in which parents and pupils are able to engage and supports the development of best practice initiatives for educators. (If you are interested in participating in a survey related to this work, please click here).

Balanced decision-making

Perhaps longer term the Covid-19 crisis will provide pointers towards a future with a more flexible education provision, which combines the best of remote learning and face-to-face lessons in a more balanced and harmonious manner.

But in the short term, we believe the potential risks of negative educational impacts should be weighed along with health risks in determining the immediate decisions about children’s return to school.

CEN Management Committee

1 June 2020

 

[i] Cullinane, C. & Montacute, R. (2020). Covid-19 and Social Mobility Impact Brief #1: School Shutdown. Report for the Sutton Trust (https://www.suttontrust.com/our-research/covid-19-and-social-mobility-impact-brief/)

[ii] National Children’s Bureau (2018) Home matters: making the most of the home learning environment https://www.ncb.org.uk/resources-publications/resources/home-matters-making-most-home-learning-environment

[iii] Stewart, H., Watson, N., & Campbell, M. (2018). The cost of school holidays for children from low income families. Childhood, 25(4), 516–529. https://doi.org/10.1177/0907568218779130

[iv] Rothermel, P. (2004). Home-education: Comparison of home- and school-educated children on PIPS baseline assessments. Journal of Early Childhood Research, 2(3), 273–299.

[v] Carlson, J. F. (2020). Context and regulation of homeschooling: Issues, evidence, and assessment practices. School Psychology, 35(1), 10-19.

[vi] Blumberg, F.C., Deater‐Deckard, K., Calvert, S.L., Flynn, R.M., Green, C.S., Arnold, D. & Brooks, P.J. (2019). Digital Games as a Context for Children’s Cognitive Development: Research Recommendations and Policy Considerations. Social Policy Report, 32, 1-33. doi:10.1002/sop2.3

[vii] Simms, V., McKeaveney, C., Sloan, S., & Gilmore, C. (2019). Interventions to improve mathematical achievement in primary school-aged children. England, UK: Nuffield Foundation.

[viii] Verhoeven, L., Voeten, M., van Setten. E., & Segers, E. (2020). Computer-supported early literacy intervention effects in preschool T and kindergarten: A meta-analysis. Educational Research Review, 30, 100325.

[ix] Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting Education in “Educational” Apps: Lessons From the Science of Learning. Psychological Science in the Public Interest, 16(1), 3–34. https://doi.org/10.1177/1529100615569721

[x] Griffith, S. F., & Arnold, D. H. (2018). Home learning in the new mobile age: Parent‐child interactions during joint play with educational apps. Journal of Children and Media, 13, 1–19.

[xi] Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K–12 students’ mathematical learning. Journal of Educational Psychology, 105(4), 970–987

[xii] Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of Intelligent Tutoring Systems: A Meta-Analytic Review. Review of Educational Research, 86(1), 42–78. https://doi.org/10.3102/0034654315581420

[xiii] Orben, A., Tomova, L., & Blakemore, S. (2020, April 20). The effects of social deprivation on adolescent social development and mental health. https://doi.org/10.31234/osf.io/7afmd

[xiv] Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016) Social re-orientation and brain development: An expanded and updated view. Developmental Cognitive Neuroscience, 17, 118–127.

[xv] Hall, F. S. (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical Reviews in Neurobiology, 12, 129–162.

[xvi] Bell, H. C., Pellis, S. M., & Kolb B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behavioural Brain Research, 207, 7–13.

Education, the science of learning, and the COVID-19 crisis

Michael Thomas and Cathy Rogers discuss the potential contribution of the science of learning to the educational challenges presented by the COVID-19 crisis, in a new article appearing in Prospects (The UNESCO Comparative Journal of Curriculum, Learning, and Assessment).

In the COVID-19 crisis, the science of learning has two different responsibilities:

  • to offer guidance about how best to deal with the impact of the current situation, including lockdown and home-schooling;
  • to consider bigger questions about what this large-scale educational experiment might mean for the future.

The first part of this Viewpoint article summarises advice for parents on mental health, and on becoming stand-in-teachers.

The second part, taking the longer view, considers the potential negative impact of the COVID-19 crisis in increasing inequality in education; but also the potential positive impact of driving innovations in technology use for educating children.

thomasrogers_frontsheet

 

The NeuroSENse project – your help needed!

neurosense_brain

The Centre of Educational Neuroscience and the UCL Institute of Education would like to invite you to participate in a questionnaire investigating your beliefs about the brain and people with special educational needs (SEN).

We would like as many people as possible above the age of 18 years old to take part in our study.

This short questionnaire will help us gain insight on what the general population knows about these topics and potentially lead to the development of targeted educational resources.

All answers will remain confidential and anonymous.

Click the link below to access the survey:

https://uclioe.eu.qualtrics.com/jfe/form/SV_d4EceZ2McQQFaKh

New paper: Using Insight From Research to Improve Education

cover

Annie Brookman-Byrne, a PhD student in the Centre for Educational Neuroscience, and Lia Commissar from the Wellcome Trust, have jointly published an article in the journal Mind Brain and Education. The paper summarises the International Mind, Brain, and Education Society pre-conference which was held in Toronto in 2016. The pre-conference was designed to share new research findings and host discussions about how best to move the field of educational neuroscience forward. The article captures discussions from the day and describes new Wellcome Trust funded work in response to the challenges. The article is freely available via this link.

Here are the key questions the paper considers:

  • What have we learned from doing educational neuroscience research in the classroom?
  • How can we close the gap between educational neuroscience research and classroom practice?
  • Where do we want educational neuroscience to be in two years, and what do we need to make that happen?

 

The Montessori educational method – is it effective?

sci_e1

CEN member Chloë Marshall has published a paper entitled “Montessori education: A review of the evidence base” in the journal Science of Learning. Montessori education is an alternative method of education which has been in existence for 100 years. In her paper, Chloë reviews the small number of research studies that have evaluated the Montessori method and draws attention to some of their methodological limitations. She also discusses studies which have not directly evaluated Montessori education, but which have evaluated features of other educational methods that are shared with Montessori, such as using phonics to teach reading and spelling. She concludes that there is growing evidence that the Montessori method is effective for supporting children’s cognitive and social development, at least when carried out faithfully to Montessori’s principles

A former Montessori teacher herself, Chloë says “National and regional education systems are beset by regular swings of the pendulum, for example towards and away from phonics, and towards and away from children working individually. This means that elements of the Montessori method will sometimes be in vogue and sometimes not. It is therefore particularly important that Montessori teachers understand the evidence base that supports, or does not support, their pedagogy.”

Neuro-hit or neuro-myth: The future of education is brain stimulation

tdcs

Brain stimulation sounds futuristic. But education is all about changing the brain, and it’s possible that new tools are available to help us do just that. In our latest addition to the neuro-hit / neuro-myth resource, we introduce the concept of brain stimulation and take a look at the current evidence on whether it is effective for improving learning outcomes.

Is intelligence fixed?

intelligence_image

The idea that our intellectual ability is written in the stars is not one that’s confined to the classroom, but it’s certainly relevant, indeed central, to the way that teachers approach their craft. This idea is also key to the way that children are perceived, and the way that they perceive themselves. In our latest addition to the neuro-hit / neuro-myth resource, we explore what intelligence is, then look at the literature around how performance on cognitive tasks can be advanced or held back.

 

Diagnosis – which diagnosis? Pitfalls and prospects for supporting the struggling learner

gathercole_learnus

In the second Annual Learnus Public Lecture on educational neuroscience held at Church House in Westminster on 17th May 2017, Professor Sue Gathercole (MRC-CBU, University of Cambridge) talked about the challenges faced by families, practitioners and policy-makers in supporting children who are struggling to learn.

She identified major hazards. These include social inequities, difficulties in identifying underlying problems in children whose first language is not English, haphazard routes to professional help, dependence on diagnoses that are of limited value, and an unrealistic emphasis on cure rather than compensation.

Prof. Gathercole argued that diagnoses of specific disorders, such as dyslexia, dyspraxia, developmental language disorder, dyscalculia and ADHD, might provide re-assurance to parents and access to therapeutic resources. However, more often than not, children exhibit more than one ‘disorder’, symptoms can be highly variable for child assigned the same disorder, and separate diagnoses play down the similarities often shown between children with different disorders. Individual diagnoses therefore can hinder identification of underlying cause or most pragmatic treatment.

She illustrated some of the challenges by describing recent research on struggling learners at the Centre for Attention, Learning, and Memory (CALM). In one study, a large sample of over 400 children were recruited through educational referrals for a range of learning problems. Detailed profiling of the children indicated that dimensions of cognition and behaviour were more important than diagnoses. She also presented evidence on when intensive cognitive training could be most effective. While no panacea, it was most beneficial when children had to learn to do something new, rather than striving to overcome a narrow core problem.

Lastly, neuroimaging of the brain structure of the struggling learners pointed to inefficient white matter connectivity as a marker of learning problems. Indeed, measures of brain connectivity could predict maths and reading ability.

An enthusiastic audience raised a number of questions in the Discussion session, including the relative neglect of secondary education as a period to remediate deficits not addressed through early intervention, the importance of the child’s self-esteem in response to their slower learning progress, and the role of the teacher in identifying each child’s strengths as a foundation on which to build strategies to overcome their difficulties. Professor Gathercole finished by describing an ambitious future project to collect advice and tips from university students who have overcome learning challenges on the best strategies to pass on to the struggling learners of tomorrow.