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Summary

Several recent studies have reported that cognitive training
in adults does not lead to generalized performance improve-

ments [1, 2], whereas many studies with younger partici-
pants (children 4 years and older) have reported distal trans-

fer [3, 4]. This is consistent with convergent evidence [5–8]
for greater neural andbehavioral plasticity earlier in develop-

ment. We used gaze-contingent paradigms to train 11-
month-old infants on a battery of attentional control tasks.

Relative to an active control group, and following only
a relatively short training period, posttraining assessments

revealed improvements in cognitive control and sustained
attention, reduced saccadic reaction times, and reduced

latencies to disengage visual attention. Trend changes
were also observed in spontaneous looking behavior during

free play, but no change was found in working memory. The
amount of training correlated with the degree of improve-

ment on some measures. These findings are to our knowl-

edge the first demonstration of distal transfer following
attentional control training in infancy. Given the longitudinal

relationships identified between early attentional control
and learning in academic settings [9, 10], and the causal

role that impaired control of attention may play in disrupting
learning in several disorders [11–14], the current results

open a number of avenues for future work.

Results

We trained infants using a battery of gaze-contingent com-
puter tasks targeting attentional control (see Experimental
Procedures). Task 1 (butterfly) featured a target that ‘‘flew’’
only while the infant looked directly at it, with distractors pre-
sented in the periphery of the visual field; task 2 (stars) and
task 4 (elephant) featured search for changing targets with dis-
tractors of varying salience; and task 3 (windows) targeted
working memory for objects embedded in scenes of varying
complexity.

Study Structure
Forty-two typically developing 11-month-old infants took part
in five lab visits over 15 days. A pre- and posttesting battery
was administered at the first and last visits. Between these
visits, the trained group (n = 21) completed on average
77 min of training; the control group (n = 21) completed the
same number and duration of lab visits but viewed infant-
*Correspondence: sam.wass@bbk.ac.uk
appropriate television clips and animations for an equivalent
amount of time.

Training Results

Outcome measures were used for each task to determine task
difficulty level during training. The difficulty level changed
adaptively during training in response to participants’ perfor-
mance, according to procedures outlined in the Supplemental
Experimental Procedures available online. Repeated-mea-
sures analyses of variance identified significant increases in
the average difficulty level across the training sessions for
task 2 (stars) [F(1,39) = 9.90, p < 0.001], task 3 (windows)
[F(1.58,14.17) = 4.85, p = 0.03], and task 4 (elephant)
[F(1,18) = 4.70, p = 0.014] (see Figure 1A).

Pre-post Test Results
Table S1 shows the raw and baseline-corrected results for all
of the pre-post measures. We conducted analyses of covari-
ance (ANCOVA) with the factor group (trained versus control),
post-test scores as the dependent variable, and pretest
scores as the covariate. This is equivalent to an ANCOVA on
the difference scores with pretest as a covariate [15]. Values
of Cohen’s d were calculated from the marginal means.
A: Cognitive Control
This was an anticipatory looking task in two phases—the pre-
switch phase tested initial rule learning, and the postswitch
phase tested ability to inhibit a previously learned rule while
acquiring a new rule [16]. An ANCOVA indicated more correct
anticipatory looks at posttesting in the trained group relative to
the controls in the postswitch [F(1,34) = 6.57, p = 0.015, Co-
hen’s d = 0.69] but not the preswitch phase [F(1,34) = 1.91,
p = 0.18] (see Figure 2A). A bivariate correlation was identified
between improvement at the postswitch phase and the
amount of training time [r(18) = 0.449, p (one-tailed) = 0.031],
suggesting that more training was associated with greater
improvement at posttesting (see Figure 3A).
B: Gap Overlap
This task assessed components of visual attention [12]. Three
trial types were administered—gap, baseline, and overlap (see
Supplemental Experimental Procedures). From these, we
calculated disengagement latencies (time to disengage visual
attention fromone target in order to fixate another one, defined
as overlap 2 baseline) and facilitation effects (cueing effect of
a temporal gap preceding the onset of the peripheral stimulus,
defined as baseline 2 gap) (following [12]). Final analysis
showed that training led to reduced reaction times on gap
[F(1,23) = 5.19, p = 0.032, Cohen’s d = 0.60] and overlap
[F(1,23) = 10.6, p = 0.003, Cohen’s d = 0.83] and nonsignificant
reductions on baseline [F(1,22) = 2.22, p = 0.15, Cohen’s d =
0.53]. Averaging the three conditions revealed globally
reduced reaction times posttraining [F(1,19) = 12.02, p =
0.003, Cohen’s d = 1.06]. Although the facilitation effect did
not change significantly after training, the disengagement
effect did [F(1,22) = 6.81, p = 0.016, Cohen’s d = 0.68] (see Fig-
ure 2B). For the whole sample without exclusion of outliers, the
average reaction-time effect was still significant, but other
effects (e.g., disengagement latencies) were nonsignificant
trends (see Table S2 and Figure S2).
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A B Figure 1. Results from Training

(A) Training: average difficulty level. The longest unbroken

instance of each training task per session was identified,

and the average difficulty level of each task was calcu-

lated (see Supplemental Experimental Procedures).

Average difficulty level at visit 4 was normalized to 1, to

allow comparison between the degrees of improvement

at the different tasks. Error bars represent standard

errors.

(B) Training: training time. Gray lines show per-session

training times for individual participants; the thick black

line shows the average. The large change between visit

1 and visits 2–4 is because visit 1 was conducted immedi-

ately following the pretest assessment battery, so infants

had already conducted circa 90 min of testing.
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C: Sustained Attention
Experiment 1 assessed infants’ looking behavior toward a mix
of novel dynamic and nondynamic images [17]. An increase
was found posttraining on average look duration [F(1,33) =
14.39, p = 0.001, Cohen’s d = 1.03]. A bivariate correlation
was observed between increase in average look duration
and amount of training time [r(17) = 0.477, p (one-tailed) =
0.026] (see Figure 3C). Experiment 2 [18] assessed looking
behavior toward ‘‘interesting’’ and ‘‘boring’’ static images.
A significant effect of training was identified for duration of
the longest unbroken look to the ‘‘interesting’’ [F(1,36) = 4.19,
p = 0.048, Cohen’s d = 0.65] but not to the ‘‘boring’’ stimuli
[F(1,36) = 1.75, p = 0.194] (see Figure 2C).
D: Working Memory

This task assessed the ability to generate saccades toward
objects following a variable delay length [19]. No significant
changes were observed following training [F(1,37) = 3.564,
p = 0.175] (see Figure 2D).
E: Structured Free Play
Infants sat in front of a puppet theater andwere presentedwith
a series of novel objects [20], and their spontaneous viewing
behavior was analyzed. Trend effects of training were found
for increased number of attentional shifts from object to
person (experimenter or caregiver) [F(1,34) = 3.33, p = 0.077,
Cohen’s d = 0.54], shorter average duration of looks to the
objects [F(1,34) = 4.1, p = 0.051, Cohen’s d = 0.58], and
increased number of separate looks to the objects [F(1,34) =
3.01, p = 0.092, Cohen’s d = 0.44] (see Figure 2E).

Discussion
We administered a battery of gaze-contingent attentional
control tasks that targeted maintaining an online goal ([21];
cf. [22]), inhibition [23], and search for a changing target [24],
as well as visuospatial working memory [25, 26]. Relative to
amatched active control group,we found that a relatively short
training period led to improved cognitive control and sustained
attention, as well as reduced average saccadic reaction times.
Attention disengagement latencies were also significantly
reduced, but only after exclusion of outliers. Trend (p < 0.1)
changes were found in spontaneous looking behavior during
free play (trend toward more and shorter looks toward the
novel object and toward more attentional shifts from object
to person). Our assessment of working memory found no
evidence of improvements following training.

A number of general factors could potentially have influ-
enced the training effects observed. First, could the improve-
ments in sustained attention have arisen because the contin-
gent nature of the training stimuli left the trained group
generally more motivated to orient toward the screen than
controls? The fact that our sustained attention experiments
identified larger increases in looking time toward ‘‘interesting’’
than toward ‘‘boring’’ images seemingly precludes this, indi-
cating a degree of selectivity in the effect (see Figure 2C; cf.
[18]). Second, could the increased cognitive control and re-
duced saccadic latencies that we found have been caused
by improved sustained attention? Trial-by-trial analyses of
the cognitive control task (Figure S1) show that between-
group differences were most evident in trials 4–6 postswitch
and actually decreased during trials 7–9, which counts against
this possibility. Third, we found considerable differences
between the (quasirandomly assigned) trained and control
groups at pretesting on certain measures (e.g., the free play
task and the second sustained attention experiment) (see
Table S1). Could these differences at pretesting have influ-
enced the training effects we found? The ANCOVA analysis
we used is considered adequately to account for this [15].
Fourth, it is possible that the infant-appropriate sustained
attention assessments that we used—looking time to novel
stimuli [17, 18]—may measure something different from the
techniques used to assess sustained attention in older chil-
dren (e.g., continuous performance task [11]).
Although novel within the infant literature, our results are

consistent with work on attentional control and executive
components in older children. Improved cognitive control
and sustained attention as well as reduced reaction times
have been reported following related forms of executive
control training (e.g., [4, 24, 25]). Globally increased reaction-
time latencies have also been associated with decreased
general executive factors and inattentive behavior [27]. Given
the links between working memory and attentional control
[26], our failure to find a training effect on working memory is
surprising; this may be because working memory, although
detectable [19], is weak at this early age. A full investigation
of the factor analytic structure underlying the training effects
that we found is a goal for future work (see e.g. [28]).
We also observed trend effects of training during free play

with toys. These results are consistent with previously re-
ported correlations between attentional control and sponta-
neous looking behavior during infancy (e.g., [29]). Using a
similar task, Kannass and Oakes [20] found that more sponta-
neous attentional reorienting at 9 months (more frequent,
shorter looks) correlated with better language development
at 31 months. It is interesting that the trained group in the
present study showed fewer, longer looks on the sustained
attention task (where there was one interesting target in a
room from which other distractions had been removed) and
more, shorter looks in another (a room with a variety of inter-
esting targets and people present). One possibility is that
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Figure 2. Results of Pre-post Assessments

All plots show D, the change in performance (post2 pre, baseline corrected) in the trained and control groups. Error bars represent standard errors. Aster-

isks indicate significance of ANCOVA analyses as described in Results: *p < 0.05; **p < 0.01; (*)p < 0.10.

(A) Cognitive control. Graph shows proportion of correct anticipatory looks in the preswitch (initial rule learning) and postswitch (unlearning one rule and

learning another) phases.

(B) Gap overlap. ‘‘Average RT’’ is the average of the three conditions that we administered (gap, baseline, and overlap). ‘‘Facilitation’’ shows the facilitation

effect, and ‘‘disengagement’’ shows disengagement latencies. Because the valence of the observed changes in the task was negative, 2D values are pre-

sented for ease of comparison.

(C) Sustained attention. ‘‘Mixed dynamic/static’’ shows the results of experiment 1,whichmeasured looking behavior toward amixture of dynamic and static

stimuli. ‘‘Interesting static’’ and ‘‘boring static’’ show the results of experiment 2, which measured looking behavior toward ‘‘interesting’’ and ‘‘boring’’ static

images.

(D) Working memory. Graph shows median delay length for trials followed by a correct response.

(E) Structured free play. ‘‘Looks to object’’ shows number of separate looks to the target objects. ‘‘Shifts from object to person’’ shows number of attention

shifts from looking at the objects to looking at either the experimenter or caregiver. ‘‘Average duration of looks to object’’ shows the average duration of

looks toward the target objects.
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increased attentional control maymake the allocation of atten-
tion more flexible, depending on context (see [18]).

Neural and Behavioral Plasticity Early in Development

Manystudieswithadults [1,2] andolderadults [2,30] have failed
to show transfer of improvements following training (although
see [22, 31, 32]). In contrast, and consistent with convergent
evidence of increased neural and behavioral plasticity earlier
in development [5–8], a number of studies with children aged
4 years and over have shown transfer of training improvements
following cognitive training (e.g., [4, 24, 25, 26, 33]).

The ability to control attention may be critically required
for the subsequent acquisition of a range of other skills—for
example, executive attention may be an important ‘‘tool for
learning’’ in language acquisition [13]. In atypical development,
early abnormalities in attentional control may lead to cascade-
like disruptions over developmental time [14]. For example,
problemswith disengaging visual attention in autism spectrum
disorders may impair learning in social situations ([12], but see
[34]). Impaired attentional controlmay also disrupt subsequent
learning in infants showing hyperactivity-impulsivity [35] and
those born preterm [36, 37], as well as those from low-
socioeconomic status (SES) backgrounds [10]. This suggests
the desirability of very early interventions when behavioral
plasticity may be greater, and before subsequent catastrophic
developmental cascades have taken place [14].
To our knowledge, this is the first report of distal transfer of

training effects following cognitive training in participants
younger than 4 years old [3, 4]. (Jankowski et al. [38] success-
fully manipulated infants’ allocation of visual attention by
shining lights at a display, although they did not assess trans-
fer to other tasks; see also [39].) In this regard, it is striking that
we found changes following briefer training periods than those
used by other studies (77 min versus 375 min for 4- to 5-year-
olds in Thorell et al. [4]). Further work is required to assess
whether this is because infant brains are more plastic and
more readily amenable to training or because eye-gaze contin-
gent training is more immersive in comparison with the point-
and-click computer interface used by other groups.
The most significant limitation to this study is that we only

assessed changes shortly (circa 15 days) after the commence-
ment of training. Although other studies have shown that im-
provements following training persist at medium-term follow-
up [26], it is possible that the relatively more plastic infant brain



A B C Figure 3. Results of Pre-post Assessments:

Selected Scatter Plots from the Trained Group

Showing Amount of Training Time against

Change in Performance at Posttesting

The y axes show the amount of total training time

(in minutes) that each participant received. The

x axes show trained infants’ change in perfor-

mance (post 2 pre) on three measures; in (B),

2D values are presented for ease of comparison.

For all three graphs, a position to the right of the y

axis indicates improved performance posttrain-

ing. The regression lines indicate the significant

bivariate correlations (see Results) observed

between training time and outcome measures in

(A) and (C).
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is more readily trainable but that these improvements dissi-
pate more rapidly. Further work is needed to assess this ques-
tion and to assess the impact of longer periods of training.

Experimental Procedures

Participants were 42 (21 trained [T], 21 control [C]) typically developing

infants. Average age at visit 1 was 339 (standard deviation 9.2) days for

the trained group, and 335 (9.2) days for the control group. Gender ratios

were 14 male/7 female (T) and 12 male/9 female (C). Two participants

(1 T, 1 C) failed to complete the study. Parents were blinded to group assign-

ment and to the specific aims of the study. The study involved five lab visits

over 15 days (T = 16 [2.2], C = 15 [1.5]). Visit 1 was pretesting followed imme-

diately by training session 1; visits 2, 3, and 4 were dedicated training visits;

and visit 5 was posttesting, which was identical to the pretesting battery.

The eye tracker used was a 50 Hz Tobii 1750 (1024 3 768 pixels, monitor

subtending 24� 3 29�); stimuli were presented using the Talk2Tobii toolbox

[40] and custom-written MATLAB scripts. Training stimuli were presented

until infants became fidgety or distressed. On average, 77 (19.1) min of

training was completed per participant. Control sessions were conducted

in the same room, with the same experimenters, and using the same eye

tracker as the training sessions and had the same duration and spacing

(yoked to a trained participant). Instead of training, control participants

viewed a selection of infant-friendly television clips and still images.

Training Stimuli

Training Protocol

Four gaze-contingent training tasks were presented in rotation at each visit.

The taskswere based on extensive piloting and had different difficulty levels

that changed adaptively depending on performance (see Supplemental

Experimental Procedures). Each task was presented until the infant became

inattentive, at which point they went to the next task or took a break.

Task 1 (Butterfly)

A target (a butterfly, subtending 6�) was presented on the screen. When the

infant fixated the target, the butterfly ‘‘flew’’ across the screen, and distrac-

tors (a house, a tree, clouds; 5�–15�) scrolled in the opposite direction.When

the infant looked to one of the distractors, the distractors disappeared and

only the target, now static, remained on screen. On refixating the target, it

recommencedmoving and the distractors reappeared and continued scroll-

ing. The salience of the distractors changed adaptively, including faster,

larger, and more densely packed objects. This task targeted selective/

focused attention and interference resolution.

Task 2 (Stars)

One of five possible targets (each a cartoon character in a brightly colored

star; 6�) was presented on screen together with eight distractors (smaller

stars, planets, clouds; 4�–8�) against a detailed still image as background.

If the infant fixated the target within 3000 ms, he or she received an

animation as a reward. The target changed from trial to trial. The salience

of the distractors changed adaptively (including moving, spinning, and

shrinking distractors). This task targeted search for a changing target and

ignoring distractors.

Task 3 (Windows)

When the infant fixated the target (an animal in a window, subtending 7�), an
animation showed the target disappearing into one of several windows that

were then covered with curtains. A fixation target (a flower; 4.5�) appeared
elsewhere on the screen and rotated when the infant looked at it. After

a delay period, the fixation target disappeared. If the infant looked back to

the window behind which the target had disappeared, he or she received

an animation as a reward. The number of windows, the salience of the dis-

tractors, and the length of the delay changed adaptively. This task trained

visuospatial working memory and required acting on stored information

about objects embedded in complex scenes.

Task 4 (Elephant)

A target (an elephant; 4.5�–8�) was presented with one or more distractor

items of the same size. When the infant looked at the target, he or she

received an animation as a reward. The same target was then re-presented

with one or more other distractors. If the infant successfully fixated the

target within the time limit, he or she received an animation as a reward; if

not, the trial reset. The number of distractors varied adaptively. After 28

trials, the target changed. This task targeted task switching, visual search,

and inhibiting the urge to look at distractors.

Pre-post Tests

Six pre-post tests were administered to infants in the trained and control

groups pre- and posttraining. These were based on previously published

infant-appropriate assessments of cognitive control (modeled on [16]),

saccadic reaction times (gap-overlap task, modeled on [12]), sustained

attention (two tasks, modeled on [17 and [18]), working memory (modeled

on [19]), and spontaneous attentional orienting during free play with

toys (modeled on [20]). The exact methods employed are described in

Supplemental Experimental Procedures.

Supplemental Information

Supplemental Information includes two tables, two figures, and Supple-

mental Experimental Procedures and can be found with this article online

at doi:10.1016/j.cub.2011.08.004.
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