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Modeling Cross-Modal Interactions in Early Word
Learning

Nadja Althaus and Denis Mareschal

Abstract—Infancy research demonstrating a facilitation of
visual category formation in the presence of verbal labels suggests
that infants’ object categories and words develop interactively.
This contrasts with the notion that words are simply mapped
“onto” previously existing categories. To investigate the computa-
tional foundations of a system in which word and object categories
develop simultaneously and in an interactive fashion, we present a
model of word learning based on interacting self-organizing maps
that represent the auditory and visual modalities, respectively.
While other models of lexical development have employed similar
dual-map architectures, our model uses active Hebbian connec-
tions to propagate activation between the visual and auditory
maps during learning. Our results show that categorical percep-
tion emerges from these early audio–visual interactions in both
domains. We argue that the learning mechanism introduced in our
model could play a role in the facilitation of infants’ categorization
through verbal labeling.

Index Terms—Categorization, computational modeling, cross-
modal interactions, self-organizing maps, word learning.

I. INTRODUCTION

A T the start of lexical development, infants face the task
of making links between words and categories of objects.

This is not a simple task, considering that both their language
and category systems are still immature by the time the first
words are produced (around 12 months of age). While it seems
intuitive that infants only engage in learning words they can
readily map onto preexisting (i.e., already formed) concepts,
evidence from studies investigating the impact of labeling on
category formation suggests otherwise: it appears that, at least
to some extent, hearing similar labels for objects may alter the
way categories are learned. For this reason we propose a model
of word learning that allows interactions between the visual and
auditory domains from the start, with a growing impact of rep-
resentation in each modality on the other.
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A. Categorization and Labeling in Infancy

During their first year of life, infants develop a phonological
system attuned to their native language [1]. Gradually they also
develop segmentation skills in order to identify recurring units
of speech (e.g., [2], [3]), and finally they must also be able to
link those to real-world entities, whether this be objects they
encounter (such as “ball.” “teddy,” “bottle”) or more abstract
concepts (e.g., “all gone”). Although infants begin recognizing
words as early as 6 months after birth [4], referent selection is
far from trivial: even after having identified that “ball” is a word,
it must be determined whether it refers to the round, red object
that daddy brought to play, to the round shape in general, the
color red, to “bouncing” or perhaps even to the game “catch
and throw” [5]. One of the questions therefore is how infants
manage to learn words as referring to an object category; i.e.,
a set of, potentially similar, objects. It appears intuitive that in-
fants might engage in categorization before the onset of word
learning and, with increasing phonological and segmentation
skills, map words onto preexisting nonverbal concepts. This is
in line with literature reporting extensive categorization skills
as early as 3 to 4 months of age (e.g.,[6]) which continue to de-
velop throughout the first year of life [7]–[10].
However, this view is contradicted by a growing body of

research that indicates that the presence of verbal labels can
have an impact on category formation in experimental settings.
For example, Waxman and Markow [11] familiarized 12- to
13-month-olds with a set of toy objects and tested categoriza-
tion by subsequently presenting a novel within-category object
together with an out-of-category object. While this test was
always presented without a label, infants heard either labeling
or nonlabeling phrases during familiarization. Those infants
who had heard consistent, novel labels during familiarization
showed a preference for the out-of-category object, suggesting
successful category formation, whereas the infants hearing
nonlabeling phrases did not exhibit a preference. The authors’
interpretation was that labels had facilitated category formation,
and suggested further that labels might “highlight commonal-
ities” between exemplars. This type of facilitation effect has
since been shown to be specific to consistent as opposed to
variable labels [12], and to linguistic stimuli as opposed to, e.g.,
tone sequences [13]–[15]. Besides, this influence of words on
categorization has been observed even for 3-month-olds, who
are far from the age at which word learning – or at least fast
mapping in laboratory settings – typically occurs [15]. While
these studies focused on the facilitation of category forma-
tion in cases where infants were unsuccessful without labels,
Plunkett et al. [16] have shown that labels may also modulate
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category formation in the case where a visual stimulus set
could be “parsed” into one large category or two subcategories
depending on whether feature correlations were used as indi-
cators for category membership. In this case, 10-month-olds
formed two categories in silence or in the presence of two
labels correlated with visual information, but formed a single
category when all objects were presented with the same label.
While this “merging” of categories leaves open whether labels
did indeed play a constructive role (since the same result could
have been achieved by the label “overshadowing” visual detail,
cf. [17]), Althaus and Westermann [18] provided evidence that
labels can also cause infants to split visual categories. In their
study, infants perceived a visual morphing continuum as just
one category in silence or when identical labels accompanied
the pictures, but as soon as distinctive labels were provided that
correlated with either end of the continuum infants divided the
continuum into two separate categories. Althaus and Mareschal
[19] further showed in an eye-tracking paradigm that labels
modulate infants’ eye movements during category learning,
causing infants to pay more attention to low-variability object
parts in the presence of labels—a finding consistent with
Waxman and Markow’s [11] hypothesis that labels highlight
commonalities.
At the same time there is also some evidence for a disruptive

impact of labels on category formation. Robinson and Sloutsky
[17] conducted a study using very similar methods to those of
[14] and [15]. However, they contrasted a label condition (famil-
iarization with images of cats, accompanied by the label “cat”)
with an entirely silent condition and a synthesized-sound condi-
tion, rather than including a no-label condition (a condition in-
cluding speech, but no novel labels, such as “Look at this one!”).
Their results indicated that 12-month-olds in fact learned better
in the absence of labels, while labels disrupted learning less than
the synthesized sound. These results call into question whether
labels in Waxman et al.’s studies were indeed facilitative since
a silent control condition was not reported [16]. To further our
understanding of the learning problem at the heart of this unre-
solved empirical phenomenon – do labels facilitate or hinder –
we must first understand the computational challenges involved
in interactions between word and category acquisition.
A model of word learning that represents not just the acquisi-

tion of an arbitrary mapping between symbols in two domains
(words and objects) but also the relationship between represen-
tations in those domains (i.e., instances of object categories, as
well as utterances of a word, for that matter) therefore needs to
allow for such audiovisual interactions to take place. Of course,
when exactly those interactions begin or whether they are in-
deed present from the onset of auditory and visual learning is
somewhat of an open question, but the finding that there may
even be differences in category formation with and without la-
bels at 3 months [15] suggests that early interactions are a pos-
sibility.
What are the consequences of early interactions between vi-

sual and auditory domains? From an information-theoretic point
of view, it is possible that this would lead to a bootstrapping ef-
fect, where the additional information present in one domain
may aid learning in the other. However, is it beneficial for cate-

gory and word representation to influence each other at a stage
when, perhaps, both are immature? The main motivation for the
interactive model described in this paper is to investigate this
question.

B. Models of the Acquisition of Word-Object Mappings

A number of computational models have been proposed in
the past to simulate learning at the interface between language
and object processing. Several of these [20]–[22] have mainly
provided evidence that the information available in the joint au-
ditory and visual information streams infants typically perceive
is sufficient for extracting word-object mappings, and that this
multimodal information indeed allows better word segmenta-
tion or identification than the auditory stream alone. Yu [21] has
further provided a computational account of the impact of la-
beling on categorization. In his model, labels help to bootstrap
categories by providing a way of identifying (potentially dissim-
ilar) visual exemplars through label-cooccurrence. However, all
of these models employ computation-intensive statistical algo-
rithms that need iterative access to the full data set, while at the
same time a developmental trajectory of learning is not directly
observed. As such, none of these approaches provide a plau-
sible, mechanistic, developmental account of the interaction of
labeling and categorization in infants.
Some connectionist approaches have gone beyond this by

using learning mechanisms that correspond more closely to the
sort of processing that may occur in a neural system. Schyns
[23] modelled concept formation with a self-organizing map
modified by the addition of a supervised naming mechanism.
This way, the model integrated unsupervised self-organization
processes with supervised learning, resulting in a prototype
naming effect (the model produced the correct label faster for a
category prototype than for exemplars distant from the category
centroid). The model further demonstrated how hierarchical
organization emerges in a top-down way (i.e., superordinate
categories were learned first), and how differences in expertise
in this context arose from different exposure. Plunkett et al. [24]
approached the word learning problem with a connectionist
simulation. Their model was an autoencoder receiving images
and labels as input. Both types of data were initially processed
in separate pathways, and projected onto separate sets of output
units (for which the target was to reconstruct the input pattern).
However, both pathways met in a layer of hidden units, which
therefore served to encode the image/label association. The
model reproduced several important aspects of language ac-
quisition in infants. Learning proceeded in a nonlinear fashion,
resembling the vocabulary “spurt” observed in infants. The
model also exhibited comprehension-production asymmetries:
producing the correct image-output upon presentation of a label
appeared easier to learn for the model than producing the cor-
rect label upon presentation of an image pattern. Furthermore
the authors found that this cross-modal network learned the
image categories faster than a unimodal version which did not
involve any labeling. Clearly, the model was able to exploit
the additional information given by the second modality. A
similar architecture was used by Schafer and Mareschal [25] to
simulate word learning data from 8- and 14-month-olds. Stager
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and Werker [26] interpreted infants’ failure at 14 months to
map a minimal pair of words (“dih”, “bih”) to distinct objects
as a deficiency in phonological encoding due to the processing
demands involved in word-object mapping. In a purely audi-
tory discrimination task even 8-month-olds perform well on
this contrast. Schafer and Mareschal employed connectionist
modeling to demonstrate that the seemingly complex looking
patterns might in fact be the outcome of an interaction of
age (i.e., more experience, or longer training in the model)
and inherent similarity structure in the stimuli. This was later
confirmed experimentally, as 14-month-olds could be shown to
learn the relevant word-object mappings using more sensitive
methodology [27].
Li et al. (2004) [28] introduced DevLex, a model consisting

of two interconnected growing self-organizing maps, one for
lexical-semantic information, and one for phonological infor-
mation. Hebbian connections were formed between the maps
so as to connect units that were coactivated. Thus the network
learned, over time, to associate word forms with their semantic
representation. Learning in this model consisted of two different
learning modes—Kohonen’s [29] self-organizing map (SOM)
algorithm, as well as a learning mode based on adaptive reso-
nance theory (ART) [30].While the SOMmode was responsible
for map organization, the ART mode was used for recruiting
new network units to simulate vocabulary growth. Essentially,
the model started out by learning in SOM mode, optimising the
topological organization of the existing units. This was followed
by a gradual transition to ART mode, in which new units were
recruited whenever the distance between input and map units
failed to exceed a certain threshold. DevLex successfully simu-
lated lexical confusion and age of acquisition effects (i.e., words
learned early are processed more easily). Further, the model
demonstrated that linguistic categories (nouns, verbs, adjectives
and function words) can emerge in this form of learning, rather
than having to be hard-wired into the system. An extension of
this model was proposed by Li et al. (2007) [31]. Working with
classic self-organizing maps instead of the growing maps, and
including an additional “phonetic output map,” this model was
capable of simulating a vocabulary spurt as well as frequency
effects. Mayor and Plunkett [32] introduced another dual-map
model with Hebbian links. A visual map was trained with distor-
tions of prototypical dot patterns. Simultaneously, an acoustic
map was trained with speech samples. Model development in-
cluded an early phase of synapto-genesis (i.e., increasing con-
nectivity) and a later phase during which inactive Hebbian links
were pruned away. While both maps essentially developed in-
dependently, “joint attentional events” trained the Hebbian links
between them: here, an object pattern was presented simultane-
ously with a matching acoustic label. The model demonstrated
successfully that a high amount of joint attentional activity is
beneficial for vocabulary growth. The authors argued further
that “taxonomic responding” (i.e., the mapping of a label to all
exemplars of an object’s category, rather than just to one ex-
emplar) was an emergent property of the model. Taxonomic re-
sponding after just one object-label exposure was higher when
the maps had developed independently for a longer period. This

attributes a prominent role to the emergence of prelinguistic cat-
egorization without an early interaction with word learning.
A different approach, also using a self-organizing map, was

taken up by Gliozzi et al. [33], who presented a model simu-
lating the empirical results presented by Plunkett et al. [16], in
which labels caused infants to merge separate categories if they
were presented with a common label. In contrast to the mul-
tiple-map approaches discussed above, this model only uses a
single map which receives input from the two sensory domains.
This model was specifically aimed at simulating the influences
of labeling on categorization, by processing the label as the
equivalent of an additional feature. Categorization of the objects
was measured by evaluating the distance between the test object
and the best matching unit after presenting each training exem-
plar just once. The results mimicked the “merging” of visual cat-
egories that was found in the experiments with 10-month-olds,
suggesting that these experimental results are consistent with a
view of labels acting as features.
Plebe et al. (2010) [34] introduced a further word learning

model consisting of parallel visual and auditory hierarchies. The
authors used stages of training to simulate development, incor-
porating incrementally more layers of the hierarchy in learning.
Only in their last, “linguistic,” training phase are representa-
tions from the visual and auditory streams finally integrated.
This stage-like process resulted in the emergence of “fast-map-
ping” at the time of integration.
In the following sections we introduce a new model to simu-

late the interaction between speech perception and object cate-
gorization. It draws on several of the above approaches in that
it uses an interconnected pair of self-organizing maps, each of
which represents a sensory domain (visual and auditory). In con-
trast to previous approaches, the focus here is on the interaction
between the two maps during learning. Specifically, we intro-
duce a novel learning mechanism that is suitable for integrating
cross-modal information, in the sense that representations in one
modality can be influenced by the other modality. As we shall
see, this mechanism supports the emergence of categorical per-
ception in both domains. Further simulations will demonstrate
the dependence of developmental outcome on the timing of in-
teractions, and also look at the effect of asymmetrical exposure
to speech vs. visual objects, as is the case in infant develop-
ment where speech is perceived prenatally, but objects occur
only from birth onwards.

II. AN INTERACTIVE MODEL OF WORD LEARNING

The model we propose combines two self-organizing maps
[29], and , which are connected by Hebbian links
([28], [31], [32], [35], [36]). Fig. 1 presents a schematic illus-
tration of the model’s architecture. The maps and
represent the visual and auditory domain respectively, and are
trained with input from that domain. The two maps are further
fully connected by bidirectional Hebbian links; i.e., every unit in
the visual map, , is connected to every unit in the auditory
map, . The learning algorithm involves updating the map
weights (i.e., weights from the input to the map units) as well
as the Hebbian connections. Importantly, the Hebbian weights
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Fig. 1. Schematic illustration of the model architecture. Two self-organizing
maps represent the auditory and visual domains. These are connected by Heb-
bian links which propagate activation between the maps and thus allow both
modalities to influence each other. The elliptical regions and arrows illustrate in
a simplified way the learning algorithm used for cross-modal interactions: direct
activation is propagated via Hebbian connections to the other map, producing
an indirect activation pattern. Weight update involves enhancement in the over-
lapping region of direct and indirect activation, and inhibition in units that are
only activated by direct input.

are active during learning: this means that map-weight update in
each modality is not just based on the activation resulting from
an input pattern in the same modality, but also incorporates ac-
tivation resulting from propagation of activation from the other
modality. This way, auditory development can influence visual
development, and vice versa.
Input patterns are presented to the model pairwise, i.e., one

visual and one auditory pattern together. The presentation of an
input pattern to each of the two maps generates a Gaussian ac-
tivation pattern across each map. First, the best-matching units
( and ) in the maps are calculated as the unit
whose map vector is closest to the corresponding input vector,
according to the distance b etween the weight vector asso-
ciated with unit in and input pattern
where and the th entry in the weight
vector associated with unit [see (1) and (2)]

(1)

and

(2)

A Gaussian with standard deviation , centred on the BMU,
is used as a coefficient for calculating unit activation. This acti-
vation pattern is termed the “direct activation” [see (3)]

(3)

Activation is then propagated via the Hebbian links to the op-
posing map, resulting in an “indirect activation” pattern
(where and ) on that map. This is a
Gaussian over the maximally activated unit (MAU) after prop-
agating activation though the Hebbian connections [see (4) and
(5)]

(4)

(5)

where and , the th unit in map ,
the th unit in map , and the weight associated with the
Hebbian connection between units and .
By propagating activation from the auditory to the visual map

and from the visual to the auditorymap, each individual map has
a direct and an indirect activation pattern. From these, the joint
activation of map , , is calculated for
each unit according to (6)

(6)

The parameter controls the impact of the cross-modal acti-
vation on learning, which can therefore change across develop-
ment. Map update is performed by moving the weight vectors
corresponding to active units (according to the joint activation
patterns) closer to the current input pattern [see (7)]

(7)

where is the learning rate.
However, as revealed by preliminary experiments, this cross-

modal enhancement needs to be complemented by an inhibitory
element. The idea behind the learning algorithm is that units re-
ceiving both direct and indirect activation represent a history of
similar objects having been paired with similar labels (and vice
versa). Visual map units receiving only direct activation may
be activated by objects that are visually similar to objects pre-
viously activating this unit, but labeled differently, and there-
fore less likely to belong to the category corresponding to that
unit. The map vector should therefore be moved away from the
present input pattern. The corresponding logic holds for audi-
tory units only receiving direct input. Therefore, in addition to
the enhancing weight update, an inhibitory weight update is per-
formed, resulting in the total weight update given in (8)

(8)

After updating the map weights, Hebbian weights are
strengthened for coactivated units (in the joint pattern) ac-
cording to (10). Hebbian weights are further normalized to not
grow larger than 1 [see(11)]

(9)

(10)

(11)

where is the set of all Hebbian weights.
Like Kohonen’s (1982) algorithm, the present procedure in-

corporates several parameters. These are the neighborhood size
and the learning rate . In addition, this learning algorithm

introduces the cross-modal integration coefficient , the inhibi-
tion coefficient and the Hebbian update coefficient . While
learning rate and neighborhood size decrease with time to en-
able learning first on a coarse, then on a finer scale, the other
coefficients, which deal with cross-modal integration, increase
over time. This reflects the fact that as organization in the indi-
vidual maps becomes more reliable, this can be exploited more
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TABLE I
PARAMETER SETTINGS FOR OPTIMAL LEARNING

and more for cross-modal integration. The parameters are sum-
marized in Table I.

A. Training Data

The visual stimuli were represented by geometrical surface-
features measured from real objects. This kind of object repre-
sentation has been used in other connectionist models of cate-
gorization (e.g., [37] and [38]), and similarity measures repre-
sented across these dimensions have been found to reflect in-
fants’ perception of the objects, as shown by their looking or
object examination times [39]. Thus, toy objects from 11 cate-
gories (e.g., cat, squirrel, ship, car, table) were encoded using
18 different surface features. Each object was represented by an
18-dimensional vector of which each slot contained the (nor-
malized) measured value of the corresponding surface feature.
There were 8 objects from every category, resulting in a total
of 88 object vectors. Word representations were kept as close
to the acoustic wave form as possible, while also keeping the
dimensionality of the resulting feature vectors low enough to
make simulations computationally feasible. Therefore, a proce-
dure similar to the one used by [32] was employed. In an infant’s
acoustic environment, every utterance (“token”) of a word is dif-
ferent.Wave forms differ physically, depending on the speaker’s
voice, accent, intonation and syntactic context. Even several ut-
terances from the same speaker differ in the length of individual
segments and intonation. For this reason eight recordings of the
11 bisyllabic nonsense words (e.g., blicket, girru, sona, cruppet)
were made, corresponding to the eight instances of every object
category in the visual data set. The recordings were then prepro-
cessed with Matlab. Each recording was sampled using 5 ham-
ming windows. The short-time Fourier transform (STFT) was
warped onto a mel frequency scale. Using the mel frequency
scale for stimulus encoding means that the power spectrum of
a sound is based on frequency bands equally spaced in the mel
scale, which allows for a representation of the sound signal that
approaches more closely that of human auditory perception. The
discrete cosine transform (DCT) was then used to convert the
frequency-domain signal back to the time domain. The result
was a set consisting of 65-dimensional vectors representing the
individual recordings. All of these preprocessing steps were per-
formed using the RASTAMAT package for speech processing
[40].

B. Model Evaluation

Model performance was assessed according to several cri-
teria. On the one hand, the Hebbian connections encode the
word-object mappings and are ultimately relevant for word
learning performance – in other words, does hearing a word
activate the appropriate visual representation (comprehension),
and does presentation of a visual object result in the appropriate
word (production)? On the other hand, as outlined above, we

are particularly interested in the model’s performance within
the individual domains. Specifically, does category represen-
tation benefit from audiovisual interactions? For that reason,
we assessed both mapping accuracy in both directions and the
topographical organization in the maps. In particular, we used
the following metrics, partially adapted from [41]. Most metrics
we use here measure performance in terms of “projections”
of a category; i.e., units that serve as best matching units for
exemplars from the category.
1) Production: This measure corresponds to the capability

of the model to produce the correct auditory label upon presen-
tation of a visual signal. For every visual exemplar, its indirect
projection via the Hebbian connections onto the auditory map
was calculated, and the closest direct auditory projection was
found. If this closest projection belonged to the auditory cate-
gory that corresponded to the visual input, this exemplar’s pro-
duction score was set to 1. The overall map production score

was then calculated as the proportion of exemplars that
had production score 1.
2) Comprehension: This measure defines the model’s ca-

pability of producing the correct visual image upon presenta-
tion of an auditory label, which is in turn related to word com-
prehension. The definition of the model’s comprehension score

was analogous to that of .
3) Discrimination: This assesses the granularity of catego-

rization, i.e., whether distinct exemplars are represented by dis-
tinct units or not. The discrimination capability of map is
defined as

(12)

where is the number of categories, the number of map
units, and defines the number of unique units
which are BMUs of exemplars of category . In other words,
the discrimination metric measures the average number of units
onto which different exemplars from a category are projected.
This value lies between 0 and 1, and small values correspond to
low discrimination of exemplars, which forms part of the defini-
tion of categorical perception. Large values correspond to good
discrimination.
4) Clustering: This metric measures the quality of catego-

rization in the sense of good data clustering. For each exem-
plar of a category and its projection in the map, the neighbor-
hood score NS evaluates the (for category members) nearest
neighbor projections according to their category membership.
If a neighboring projection also corresponds to the target exem-
plar’s category, it contributes score , if it is from a different
category, its score is . The neighborhood score is then
defined as

(13)

A category’s neighborhood score is then the average neigh-
borhood score of its members, , and the
whole model’s clustering score is the average of all categories’
neighborhood scores

(14)
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Fig. 2. Independent model performance: Hebbian weights were passive, so the
maps could not influence each other during training. Top row: development in
the visual map. Bottom row: Development in the auditory map.

Fig. 3. Independent model: Exemplar projections after 450 epochs of training
by category. a) visual map, b) acoustic map. a) Exemplar Projections (visual).
b) Exemplar Projections (auditory).

5) Mean Exemplar Distance (MED): The metric
refers to the averaged euclidean distance between the projec-
tions of two exemplars from the same category

(15)

for all pairs of exemplars from the same category, where
is the euclidean distance between the two exemplars in

pair , the number of pairs of exemplars in the category. Like
this measures how well projections, i.e., BMUs, of cat-

egory exemplars are grouped together. Instead of focussing on
what categories neighboring units are activated by (in a way
measuring how homogenous larger areas in map space are), this
metric assesses whether projections form tight clusters in map
space or are spread out.

III. RESULTS

In order to investigate the impact of interactive learning, we
trained two separate models – one using just the regular, nonin-
teractive self-organizing map algorithm with “passive” Hebbian
weights connecting the two maps (i.e., weight update within the
maps is based solely on the direct activation pattern, merely the
Hebbian connections encode coactivation of auditory and vi-
sual units), and one using the interactive algorithm presented

above. Here, we report results with optimized parameter set-
tings, which are given in Table I1.
All results in the following two sections are based on 10 sim-

ulations with 11 categories. The map size chosen for this was
a 20 20 grid of units. Since preliminary simulations showed
that the maps settled into a stable state between 400 and 450
epochs of training with no changes occurring after this, all sim-
ulations reported here were carried out with a training phase of
450 epochs. One epoch consisted of a presentation of each pair
of training exemplars (in random order), with weights being ad-
justed immediately.

A. Independent Maps

Fig. 2 shows the results of the model with independent map
development. The model’s behavior was similar with respect
to Production and Comprehension scores. Initially both metrics
increased rapidly, but started to level out once rates of approx-
imately 85% of the mappings had been learned, after 130 (vi-
sual) and 120 (auditory) epochs, respectively. By 340 epochs,
all mappings from the visual to the auditory domain had been
encoded. Comprehension reached 100% first after 260 epochs.
This comprehension/production asymmetry may stem from the
smaller within-category variability in the auditory domain in
this specific data set.
Discrimination in the visual domain reached its maximum,

93%, after 190 epochs of training2, and then remained settled.
There were thus 6 out of the 88 exemplars that were not mapped
onto a separate unit in the map. Development in the auditory
map was highly similar; the maximum discrimination of 91%
was reached after 180 epochs.
The Mean Exemplar Distance metric was almost static at 4.4

in both the visual and auditory domains by 90 epochs, and only
diverged from this value before the 90th epoch. This means that
by this point in training, individual exemplars’ projections were
almost equally spaced out. This becomes clearer when exam-
ining Fig. 3. This plot depicts the 20 20 grid used for the sim-
ulations and the projections of exemplars after 450 epochs. The
units activated by a given exemplar are highlighted in the color
corresponding to its category. Exemplars are spread out evenly
across the map in both domains.

B. Interactive Maps

Using the interactive algorithm, the model’s behavior was
radically different from that with independent maps (see
Fig. 4). Development in the metrics reflecting Hebbian connec-
tion quality had a highly nonlinear time course. The Production
measure exhibited a significant dip around 190–200 epochs.
This was followed by an increase of production performance
to 100% (where the metric settled at 320 epochs). The Com-
prehension metric, which was stable at 100% after 380 epochs,
had a much less pronounced dip. This indicates that compre-
hension has an advantage above production early in training.
Specifically, comprehension exceeded production between 100

1Optimal results were obtained after simulationswith the following parameter
variations: , , , , ,

, , , ,
2During training, performance was measured after every 10th epoch. The

maximum was taken to be achieved if the mean of 10 simulations after a fixed
number of epochs was not significantly different from the maximum, as estab-
lished via independent -tests.
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Fig. 4. Interactive model performance: the maps could influence each other
through enhancement and inhibition. Top row: Development in the visual map.
Bottom row: Development in the auditory map.

and 210 epochs (based on two-tailed -tests, significance level
0.05). This production-comprehension asymmetry probably
arose from a higher within-category similarity of the auditory
stimuli.
The clustering measure in the visual domain achieved a mean

value of 90% during the last 30 epochs. This means that, on av-
erage, 90% of a projection’s nearest neighbor-projections (
being the number of exemplars in the category) were from the
same category. Looking at the spatial distributions of projec-
tions in the map (see Fig. 5), it becomes clear why: The map has
formed a representation of the categories in unit space whose
behavioral consequence will be “categorical perception”. Ex-
emplars from one category are mapped onto tight clusters of
units, whereas units representing different categories are far
apart. This is the case in both the visual and auditory map, and
is radically different from the map representations that emerged
during independent map development, where within-category
distances are about the same as between-category distances.
Inspecting how map organization changed over time during
training revealed an initial distributed representation of projec-
tions, similar to the independent model. However, between 170
and 200 epochs the maps started reorganizing, yielding tighter
clusters of exemplar projections. This reorganization coincided
with the dips in Comprehension and Production metrics and
was also reflected in the three map evaluation metrics: discrim-
ination in both domains increased for the first 170 epochs (180
in the auditory domain), but then dropped off steeply, settling at
a value of 39% in the visual domain (i.e., approximately three
patterns were mapped onto the same unit on average), and 30%
in the auditory. The mean exemplar distance equally increased
at first but then dropped to values around 1 (1.4 in the visual
map, 0.74 in the auditory map). Clustering values decreased in
the initial stages, but then began to increase from about 200
epochs onwards.
Closer inspection revealed that the reorganization phase

began around the time in training at which was equal to 0.5,
suggesting that the behavior is tied to the degree to which the
maps influence each other. We therefore conducted a series of
simulations varying the onset of in order to systematically
examine the impact of early versus late interactions between
the maps: keeping the growth of stable, a small onset value
will yield later dominance of cross-modal activation, whereas

Fig. 5. Interactive model: Exemplar projections after 450 epochs of training
by category. a) visual map, b) acoustic map. a) Exemplar Projections (visual).
b) Exemplar Projections (auditory).

Fig. 6. Map development with different initial settings of the parameter ,
which defines the amount of map interaction: for values of , indirect
activation has a larger weight than direct activation as far as map update is con-
cerned. Changing the initial setting of clearly has a dramatic impact on map
development. Top row: Development in the visual map. Bottom row: Develop-
ment in the auditory map.

a large onset value will lead to an early influence of – possibly
immature – indirect activation patterns. These simulations are
discussed in the next section.

IV. THE IMPACT OF EARLY VS. LATE MAP INTERACTION

In the settings used for the simulations presented above (
) both maps were fairly well-developed by the time indirect

activation played a significant role, even though cross-modal
influence developed gradually from the start of training. Fig. 6
shows results for simulations with and .
In the case of , the point of “equal influence” is not
reached until 380 epochs into training. As a consequence, map
reorganization started late and was not completed by 450 epochs
– a process which also appeared to have a detrimental impact on
the quality of the Hebbian weights, as shown by the lower com-
prehension and production scores. Setting by con-
trast led to a learning trajectory that apparently skipped reorga-
nization: Clustering and appeared to increase/decrease
almost steadily. The impact on comprehension and production
was, however, fairly marginal.
The changes in developmental trajectories for different onset

values of indicate that interactive development is not simple:
the timing and amount of cross-modal influences is crucial.
Even when the right learning mechanisms are in place, there is
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no guaranteed advantage for interactive learning. Surprisingly,
an earlier onset of cross-modal interactions ( ) did not
lead to significant disruptions. It remains to be seen whether an
even earlier audiovisual influence will lead to more errors in
comprehension and production.

V. ASYMMETRICAL AUDIO–VISUAL DEVELOPMENT

While the onset of audiovisual interactions is clearly a rele-
vant factor in the observed development of category and word
representations as well as the mapping between them, these re-
sults raise another important question. The quality of the inter-
actions are dependent on the structure in the individual domain
maps – but this structure has its own, complex developmental
trajectory in each sensorymodality.While we have so far treated
both auditory and visual processing as equivalent, this is not
the case in reality. Besides differences that may be intrinsic to
the nature of auditory vs. visual input from a signal-processing
point-of-view, one very basic fact is that the two modalities do
not commence development simultaneously. Previous research
has demonstrated that infants’ language development does not
only start at birth: exposure to speech sounds begins in uterus.
The sounds the foetus perceives are principally low-pass filtered
maternal speech [42]. By contrast, exposure to visual stimuli
from the environment is exclusively postnatal (as opposed to
organism-internal retinal activation, which may prepare the vi-
sual system for environmental input, but not stimulate it in the
same way, cf. [43]). Could this have an effect on the audio-
visual interactions involved in word-object mappings? It ap-
pears likely that—in the SOM analogy—some structure is al-
ready present in the auditory map by the time true audiovisual
events begin to occur. Although this is a coarse simplification,
the impact of this type of asymmetry on an abstract level can
be explored with simulations using the model presented above.
To this end, we trained a map with the standard SOM algo-
rithm on the auditory stimulus set for 70 epochs. This struc-
tured map then served as the starting point in the auditory do-
main for audiovisual training. Apart from this, no changes were
made to the map architecture or parameter settings. Learning
with the pretrained auditory map appeared to be highly sim-
ilar to progress without pretraining. The only notable differ-
ence was an accelerated settling of the Comprehension score
at 100%, which took 320 epochs–60 epochs less than in the
standard training procedure. As the Hebbian weights, whose
quality determines comprehension scores, were not involved (or
modified) during pretraining, this represents an actual compu-
tational advantage. In order to investigate whether the amount
of pretraining had an influence on cross-modal learning, the
simulations were repeated with 200 epochs of auditory uni-
modal training before the onset of audiovisual events. This re-
sulted in no noteworthy changes. Examiningmap representation
at different stages during development showed the following:
While the auditory map appeared well-structured at the onset of
cross-modal training, the topographical organization acquired
over the pretraining phase was lost within a few epochs of au-
diovisual exposure, and map-organization had to begin from
scratch. The indirect activation being propagated into the au-
ditory map from the (unstructured) visual map seemed to un-
ravel the previously acquired category structure. A further set

Fig. 7. Map development (interactive) after pretraining the auditory map for 70
epochs, with and . Top row: Development in the visual
map. Bottom row: Development in the auditory map.

of simulations therefore involved changing the initial param-
eter settings for cross-modal training. The target was to let the
prestructured auditory map influence map development in the
visual domain to a large degree (with the indirect auditory ac-
tivation just overriding the direct activation), but to let the un-
structured visual map have almost no impact on auditory de-
velopment. Initial parameter settings were therefore
and (all others remained the same, i.e., maps did not
differ in plasticity). Fig. 7 shows the results of these simulations.
The developmental trajectory clearly showed some changes,
specifically in the visual domain. The “re-organization phase”
seemed to be almost nonexistent in visual development, with
the trajectories of Clustering and Mean Exemplar Distance, as
well as Production, being almost monotonic. Similarly, the Dis-
crimination metric only increased minimally before dropping
off again, yielding a comparatively flat developmental trajec-
tory. What this shows is that the pretrained map can have an im-
pact on the opposite map, if the parameter settings are chosen ac-
cordingly. This is not necessarily an artificial construct: it seems
plausible that the initial -setting can in some way be tied to
the degree of map organization, and in terms of learning it defi-
nitely makes sense to prevent an unstructured map from altering
a structured one, but to enhance the opposite. While the Com-
prehension and Production rate were not consistently signifi-
cantly different from each other (independent -tests), the model
achieved a Comprehension rate of 100% after 330 epochs, and
a Production rate of 100% after 440 epochs.
Even though the stimulus encodings in the present simula-

tions were quite abstract and consequently the learning trajec-
tories may not reflect the full complexity of processing speech
versus visual objects, the simulation results suggest that this
Comprehension/Production asymmetry may at least partially
reflect the effect observed with infants, where word compre-
hension precedes production by several months. Asymmetric
cross-modal learning may therefore play an underlying role in
this observed discrepancy between infants’ learning which ob-
jects words refer to, and actively using the words.
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VI. GENERAL DISCUSSION AND CONCLUSION

We have presented a model of word learning that involves
interacting self-organizing maps of visual and auditory repre-
sentations. The learning mechanism this model introduces in-
volves a “fine tuning” of learned representations that considers
not just input in the corresponding domain, but also the “his-
tory” of similar input patterns having been paired with sim-
ilar counterparts in the other domain, which is preserved in the
Hebbian connections. As a result of this learning mechanism,
categorical perception emerged in both domains: within-cate-
gory distances between exemplars were small, but between-cat-
egory distances large–yielding a qualitative change in category
representations. This new category structure is computationally
superior for treating stimuli categorically: assigning an object
to a category is easy under these circumstances, as even mar-
ginal exemplars will be clearly mapped onto a category rather
than in a transitional grey zone where similarity to members
of two categories may prevent unambiguous category member-
ship decisions. At the same time, smaller within-category dif-
ferences can be ignored – meaning that features irrelevant for
category assignment do not interfere with, e.g., selecting appro-
priate actions or expectations for encountered exemplars. This
tightly clustered category representation developed with no cost
in terms of word-object mapping accuracy. Although develop-
mental trajectories in the interactive simulations exhibited a dip
in mapping accuracy (Production and Comprehension scores),
this was merely a transient effect as the auditory and visual
domains began to reorganize with increased cross-modal influ-
ence. We hypothesize that this type of cross-modal interaction
may play a role in infants’ learning of word-object mappings.
The initial effects of this mechanismmay further underlie the re-
ported facilitation of categorization through labeling ([11], [14],
[16]), as the improved category structure exhibiting tighter clus-
ters and large intercategory distances may enable infants to re-
ject a test item as a member of the familiarized category—i.e.,
to exhibit increased novelty preference. The emerging category
structure in the interactive model also suggests that discrimina-
tion between category members is decreased in comparison to
unimodal (or independent) learning. This is an interesting hy-
pothesis for future infant studies: None of the previous studies
on infants’ category formation in the presence of labels inves-
tigated specifically the encoding of familiarization items with
regard to discrimination.
Further simulations revealed the role that the timing of cross-

modal interactions plays in development. Early interactions ap-
peared to improve learning, while a shift to dominance of cross-
modal interactions only later in learning seemed to prevent the
beneficial effects found earlier. Whether an even earlier onset
of audiovisual interactions would be disruptive remains to be
seen. However, it is possible to conclude from the simulations
presented in this paper that it is not necessary—as has been
suggested elsewhere [32]—to develop mature category repre-
sentations before learning cross-modal connections. If anything,
weak but early interactions seem more beneficial for a gradual
learning than late interactions.
We finally looked at the role of asymmetric learning in this in-

teractive scenario. While the prenatal onset of auditory learning
compared to a postnatal onset of visual exposure can be disre-
garded in models where representations in both domains do not

influence each other during training, it is crucial to ensure that
development in any interactive model is robust enough to tol-
erate such asynchrony. Our simulations showed that this is the
case—pretraining the auditory map did not have a negative im-
pact on learning. Instead, with appropriate parameter settings
this resulted in an advantage in word comprehension – an indi-
cator that exposure asymmetry could be beneficial to audiovi-
sual development in infancy.
Our model considers interactions between auditory and vi-

sual learning across development—essentially laying out a tra-
jectory from the onset of auditory and visual input through to
word-object mappings.While this is taking on a macro-perspec-
tive on a small scale (involving only a small number of visual
and auditory categories) we think this is a valid illustration of
how dynamic sensory representations (the two maps) interact
over time and how small changes in each domain can give rise
to complex developmental trajectories.
The present model only considers perceptual features of ob-

jects, rather than encoding conceptual attributes as well (e.g.,
“animate,” [44]). This is not a general restriction – as a math-
ematical notion of similarity may be based on perceptual and
conceptual features, the learning algorithms described here can
apply to a much larger range of features. The general conclusion
that learning about words and objects may occur in a parallel,
interactive way – and such learning may in fact be advantageous
– holds regardless of how the categories involved are defined.
The relationship between this model and existing studies of

word learning and categorization is in a sense indirect as the
time scale of the model is so different from infant experiments
(usually involving “category learning” in a single session of
about 1–2 min duration). The computational benefit of cross-
modal learning explored here is, however, a plausible explana-
tion for the advantage found in infant experiments for learning
categories in the presence of labels. To construct a model simu-
lating the experimental task directly is an aim for future work.
In conclusion, we have presented a plausible, cross-modally

interactive model of word learning that can account for inter-
actions between word processing and category formation in in-
fancy. Future work will determine further whether the model is
able to deal with larger scale lexical and object input, and also
whether learning in the model could be made more biologically
plausible by regulating internally some of the aspects currently
handled by predefined parameters.
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